A box-covering algorithm for fractal scaling in scale-free networks.
نویسندگان
چکیده
A random sequential box-covering algorithm recently introduced to measure the fractal dimension in scale-free (SF) networks is investigated. The algorithm contains Monte Carlo sequential steps of choosing the position of the center of each box; thereby, vertices in preassigned boxes can divide subsequent boxes into more than one piece, but divided boxes are counted once. We find that such box-split allowance in the algorithm is a crucial ingredient necessary to obtain the fractal scaling for fractal networks; however, it is inessential for regular lattice and conventional fractal objects embedded in the Euclidean space. Next, the algorithm is viewed from the cluster-growing perspective that boxes are allowed to overlap; thereby, vertices can belong to more than one box. The number of distinct boxes a vertex belongs to is, then, distributed in a heterogeneous manner for SF fractal networks, while it is of Poisson-type for the conventional fractal objects.
منابع مشابه
Fractality and self-similarity in scale-free networks
Fractal scaling and self-similar connectivity behaviour of scale-free (SF) networks are reviewed and investigated in diverse aspects. We first recall an algorithm of box-covering that is useful and easy to implement in SF networks, the so-called random sequential box-covering. Next, to understand the origin of the fractal scaling, fractal networks are viewed as comprising of a skeleton and shor...
متن کاملExploring self-similarity of complex cellular networks: the edge-covering method with simulated annealing and log-periodic sampling
Song, Havlin and Makse (2005) have recently used a version of the box-counting method, called the node-covering method, to quantify the self-similar properties of 43 cellular networks: the minimal number NV of boxes of size l needed to cover all the nodes of a cellular network was found to scale as the power law NV ∼ (l+1) −DV with a fractal dimension DV = 3.53±0.26. We propose a new box-counti...
متن کاملScaling Properties of Complex Networks and Spanning Trees
We present a relation between three properties of networks: the fractal properties of the percolation cluster at criticality, the optimal path between vertices in the network under strong disorder (i.e., a broad distribution of edge weights) and the minimum spanning tree. Based on properties of the percolation cluster we show that the distance between vertices under strong disorder and on the m...
متن کاملA review of fractality and self-similarity in complex networks
We review recent findings of self-similarity in complex networks. Using the box-covering technique, it was shown that many networks present a fractal behavior, which is seemingly in contrast to their small-world property. Moreover, even non-fractal networks have been shown to present a self-similar picture under renormalization of the length scale. These results have an important effect in our ...
متن کاملFractality in complex networks: critical and supercritical skeletons.
Fractal scaling--a power-law behavior of the number of boxes needed to tile a given network with respect to the lateral size of the box--is studied. We introduce a box-covering algorithm that is a modified version of the original algorithm introduced by Song [Nature (London) 433, 392 (2005)]; this algorithm enables easy implementation. Fractal networks are viewed as comprising a skeleton and sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2007